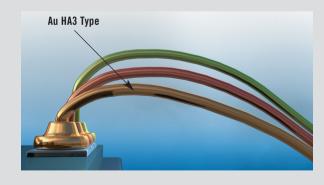
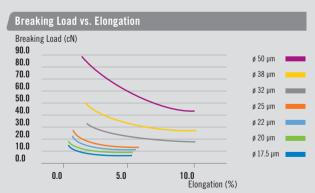
Heraeus

Au HA3 Low Loop • High Reliability • Bumping

In contrast to doped Au wires, alloyed wire types contain a low percentage of alloying elements. This results in markedly higher wire strength, shorter heat affected zones and better thermal stability without a significant increase in electrical resistance. The increased wire strength, while maintaining all other mechanical properties, permits a reduction of

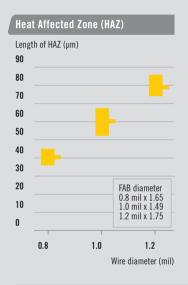


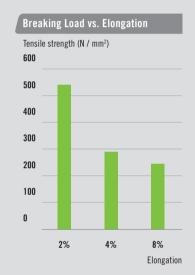

wire diameter together with a marked saving in precious metal costs. Areas of application

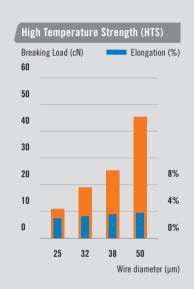
- High frequency bonding
- Low temperature bonding
- Low- and long-loop bonding
- High speed bonding
- Ultra fine pitch bonding
- Ball bumping

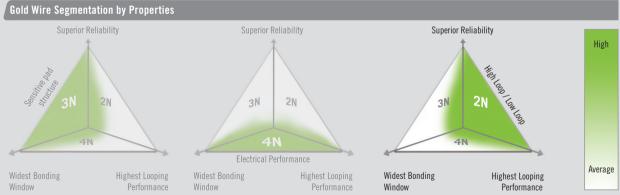
Au HA3 Benefits

- High reliability wire type
- Increased strength, high loop stiffness
- Very good pull strengths and shear
- Long & low loop geometries
- Optimum stabilized phase formation
- High thermal stability




Recommended Technical Data of Au HA3										
Diameter	Microns (μm)	17.5	20	23	25	30	33	38	50	
	Mils	0.7	0.8	0.9	1.0	1.2	1.3	1.5	2.0	
Elongation	%	2 – 6	2 – 6	2 – 6	2 – 8	2 – 8	3 – 8	3 – 8	3 – 8	
Breaking Load	cN	> 5	> 6	> 8	> 10	> 15	> 18	> 22	> 40	


For other diameters, please contact Heraeus Bonding Wires sales representative.


Heraeus

HA3 Characteristics for 25 µm diam	neter		
Non-Gold Elements	< 100 ppm	Heat Conductivity	3.03 W / cmK
Elastic Modulus	> 90 GPa	Electrical Resistivity	2.9 μ Ω -cm
Heat Affected Zone (HAZ)	60 — 100 μm	Coeff. of Linear Expansion (20 – 100 °C)	14.2 ppm / K
Melting Point	1063 °C	Fusing Current for 25 µm, dia 10 mm length (in air)	0.345 A
Density	19 2 g / cm ³		

Heraeus Electronics

Heraeus Deutschland GmbH & Co. KG Heraeusstraße 12-14 63450 Hanau, Germany www.heraeus-electronics.com

Americas

Phone +1 610 825 6050 electronics.americas@heraeus.com

Asia Pacific

Phone +65 6571 7677 electronics.apac@heraeus.com

China

Phone +86 21 3357 5457 electronics.china@heraeus.com

Europe, Middle East and Africa

Phone +49 6181 35 3069 +49 6181 35 3627 electronics.emea@heraeus.com

The descriptions and engineering data shown here have been compiled by Heraeus using commonly-accepted procedures, in conjunction with modern testing equipment, and have been compiled as according to the latest factual knowledge in our possession. The information was up-to date on the date this document was printed (latest versions can always be supplied upon request). Although the data is considered accurate, we cannot guarantee accuracy, the results obtained from its use, or any patent infringement resulting from its use (unless this is contractually and explicitly agreed in writing, in advance). The data is supplied on the condition that the user shall conduct tests to determine materials suitability for particular application.